TOOLKIT FOR PREPARING CERCLA RECORDS OF DECISION **SEPTEMBER 2011** # TOOLKIT FOR PREPARING CERCLA RECORDS OF DECISION This effort is the culmination of a multi-year collaboration with the Department of the Navy (DoN) to investigate ways to produce higher quality and more user-friendly Records of Decisions. EPA wishes to acknowledge the DoN for its creative ideas, unflagging assistance, and technical support, especially the graphics production. This product has been significantly improved through those who have worked with EPA over the years and EPA gratefully acknowledges their contributions. ## TOOLKIT INTRODUCTION This toolkit consists of sixteen exhibits and each includes a "Recommended Toolkit Tip to help improve the quality and transparency of data presentation in a Record of Decision. This document provides Remedial Project Managers (RPMs) with a resource to help improve the public transparency and understanding of Superfund Records of Decision (RODs) for remedy decisions developed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)¹ using communication tools designed to enhance the decision document's presentation (Exhibits 1-16). This document provides suggestions on means to convey information graphically and visually in a ROD or in a separate outreach document. By using these tools, RPMs may help clarify the selected remedy (Figure 1) and effectively convey information in a format that thoroughly yet concisely presents the full rationale for the remedy decision. These tools are meant Expected Outcome Selected Remedy Release Remedial Action Remedial Action Remedial Action to supplement the ROD decision document, not replace it. The suggestions or tools in this document do not substitute for the statutory or regulatory requirements for a ROD or for related guidance documents². The ROD should be a defensible, stand-alone document that memorializes the remedy decision in an appropriate level of detail, as discussed in EPA's ROD Guidance. Sometimes, in attempts to be all inclusive or overly thorough, a ROD includes extraneous information or provides an excessive amount of detailed information from previous documents. This may inadvertently affect the public's ability to understand the ROD. RPMs may be able to summarize the key facts from prior site-related documents and use the tools described herein to enhance the decision document's presentation to provide a more succinct and understandable ROD. For example, by using summary graphics, figures, and tables, supported by appropriate text, an RPM may be able to better illustrate the data, analysis, and rationale to better explain the remedy selected in the ROD. Because there is no "one size fits all" template, it is generally important during development of a ROD to include the level of detail recommended by EPA's ROD Guidance and consider the use of streamlining and visualization tools for better site-specific data or information presentation. The example exhibits presented in this document track the EPA ROD outline as provided in the "A Guide to Preparing Superfund Proposed Plans, Records of Decision, and other Remedy Selection Decision Documents" (OSWER 9200.1-23P) July 1999, on page 6-2. Each exhibit provides recommended tips that suggest how and where to consider including tools like tables and graphics in a ROD. These recommended streamlining and visualization tools may also be effective in the preparation of other documentation related to the CERCLA remedy selection process, such as Remedial Investigations and/or Feasibility Studies. This document is designed to be viewed electronically. This format allows the reader to zoom into the detail presented in the color graphics. Please note that some reformatting may be required for printing. EPA plans to create a web site that will provide additional information on available visualization and decision support tools (i.e., software packages). These support tools often can be used to present data/ information similar to the exhibits in this document. The web site is intended to provide a resource of available free-ware and commercial computer software. The data visualization tool listing will not provide endorsements or recommendations of specific resources but instead will provide potential users with examples of tools available and their stated applications. EPA also intends to provide a series of documents on Conceptual Site Models designed to discuss the context for potential use of visualization tools. The science supporting data visualization is advancing rapidly and we anticipate the web site will continue to capture these advances. ¹This document provides guidance to Regional staff regarding how the Agency intends to interpret and implement the NCP which provides the blueprint for CERCLA implementation. However, this document does not substitute for those provisions or regulations, nor is it a regulation itself. Thus, it cannot impose legally binding requirements on EPA, sites, or the regulated community and may not apply to a particular situation based upon the circumstances. Any decisions regarding a particular situation will be made based on the statute and the regulations, and EPA decisionmakers retain the discretion to adopt approaches on a case-bycase basis that differ from the guidance where appropriate. ²See for example 40 CFR 300.400 and the guidance document entitled: "A Guide to Preparing Superfund Proposed Plans, Records of Decision, and Other Remedy Selection Decision Documents" (OSWER 9200.1-23P), July 1999. ## **TOOLKIT EXHIBITS** **Exhibit 1:** Road Map of the Key Elements of Remedy Selection **Exhibit 2:** Data Certification Checklist for RODs with Multiple Operable Units/Sites **Exhibit 3:** Site Layout and Photographs **Exhibit 4:** History of Site Investigations and Actions **Exhibit 5:** Nature and Extent of Contamination **Exhibit 6:** Conceptual Site Model **Exhibit 7:** Current and Potential Future Land and Resource Uses **Exhibit 8:** Risk Assessment Summary Tables Exhibit 9: Basis for Action **Exhibit 10:** Remedial Action Objectives for Chemicals of Concern Requiring Action **Exhibit 11:** Summary of Remedial Alternatives **Exhibit 12:** Evaluating Monitored Natural Attenuation as a Remedial Alternative **Exhibit 13:** Comparative Analysis of Alternatives **Exhibit 14:** Description of Selected Remedy **Exhibit 15:** Expected Outcomes of the Selected Remedy Exhibit 16: Optional Reference CD ## EXHIBIT 1. ROAD MAP OF SOME KEY ELEMENTS OF REMEDY SELECTION ## Recommended Toolkit Tip RCLA Release Conduct site investigation activities to identify the CER- CLA release, surface charac- teristics, hydrogeology, nature and extent, and fate and trans- port mechanisms to develop the conceptual site model (CSM). 2 Conceptual Site Model Exhibit 1 visually displays some of the possible graphic tools that should be considered for incorporation into a ROD; however, this Exhibit itself should not be included in the ROD. These tools can help explain the CERCLA remedy selection decision process, and help promote meaningful community involvement, which typically is a key component throughout that process. Similar to a directional road map, there is a starting point (CERCLA Release) and a finish line (Expected Outcomes) for the site, with many key stops along the way. ## 3 Risk Assessment | Receptor | Media [†] | Pathway | Chemical of
Concern | Exposure Point
Concentration | RME
Cancer
Risk | RME
Non-
Cancer
Risk
(HI) | CT
Cancer
Risk | CT
Non-
Cancer
Risk
(HI) | Cancer
Toxicity
Factor
(CSF)
mg/kg-day ⁻¹ | Non-Cancer
Toxicity
Factor (RfD)
mg/kg-day ⁻¹ | |-----------------|---------------------------------|---------------------------------|---|---------------------------------|-----------------------|---------------------------------------|----------------------|--------------------------------------|--|---| | Future
Adult | Subsurface
Soil | Inhalation | C11-C22 Aromatic
Hydrocarbon
Fraction | 3,062 mg/kg | NA | 2.92 | NA | 0.711 | Not
carcinogenic | 3 x 10 ⁻² | | Resident | Groundwater | Ingestion | VC | 6.52 µg/L | 1.5E-04 | 0.0 | 2.0E-05 | 0.0 | 1.9 | 0.0 | | Future
Child | Subsurface Incidental Ingestion | C11-C22 Aromatic
Hydrocarbon | 3,062 mg/kg | NA | 1.30 | NA | 0.159 | Not | 3 x 10 ⁻² | | | Resident | Soil | Inhalation | Fraction | | NA | 2.92 | NA | 0.711 | carcinogenic | 0 % 10 | Results of the risk assessment are used to identify media and chemicals of concern (COCs) warranting a response action based on current and potential future land and resource use. 4 Basis for Action 5 Remedial Action Objectives **9** Expected Outcomes Air sparge system until groundwater cleanup levels are met (expected 5 years) to achieve UU/UE. LTM Maintain LUCs and LTM until groundwater COCs are at or dwater under potable classification of the aquifer as a potential source of drinking water and to prevent human ingestion of containing COCs at concentrations above v cleanup levels for four consecutive monitoring ev NCGWQS or MCL standards, whichever is more to establish UU/UE. carbon-contaminated soils above the NC HWS under residential use SSL and minimize transport to groundwater. The components of the Selected Remedy mitigate risk to achieve RAOs consistent with current and potential future land and resource uses. | Alternative | Components | Details | Cost | | |---|---|---
---|-------------| | 1—No Action | None | Allow the COCs to breakdown naturally over time | Capital Cost | \$0 | | | | | Annual operation and
maintenance (O&M) | \$0 | | | | | Total Present-Worth | \$0 | | | | | Timeframe | 30 years | | 2 -MNA / LUCs | MNA | Groundwater monitoring and reporting to assess the | Capital Cost | \$13,500 | | | | progress of natural attenuation over time | Annual O&M | \$48,249 | | | LUCs | LUCs to prevent exposure to groundwater and | Total Present-Worth | \$763,736 | | | | petroleum hydrocarbon-impacted soil | Timeframe | 30 years | | 3 –ERD using existing | Enhanced Anaerobic | Injection of electron donors through existing | Capital Cost | \$854,751 | | Horizontal Well and
Downgradient ERD | Bioremediation through
Horizontal Well | horizontal well to stimulate anaerobic biodegradation
of CVOC source by reductive dechlorination | Annual O&M | \$48,295 | | Injections / Monitoring / | TIONEONIAI TTOII | of 5 v 5 5 5 5 5 5 5 7 5 5 5 5 5 5 5 5 5 5 | Total Present-Worth | \$1,946,816 | | LUCs | Enhanced Anaerobic
Bioremediation via
Downgradient Injections | Injection of electron donors in wells downgradient from horizontal well, upgradient of Courthouse Bay, to stimulate anaerobic biodegradation of CVOCs by reductive dechlorination and minimize migration of CVOCs to Courthouse Bay | Timeframe | 20 years | | | LUCs | LUCs to prevent exposure to groundwater and petroleum hydrocarbon-impacted soil | | | Remedial alternatives are evaluated against the nine criteria and one another for a comparative analysis. | | | | | | 2 06050N 5144460* | | |--|---|---|--|--|--|--| | 2 DECISION SUMBARY | | | | | | | | The No Action absention of down and protection of the process t | medial alter
their goals :
roundwater
cted exposus
ternatives is
ess 3 (ERD) a
area, althor
to the natur
idth respect | natives are gr
for four conse
and subsurfa-
re. the expectes
and 4 (Air Spa-
agh all alter
al atternation
to the nine | oundwater s
cative samp
ice soil are:
I timeframe
rge with ERI
utives are o
process at S | monitoring
ling events
reduced to
to achieve
D) have the
expected to
ite 73. | and the Europeanused Albamothers 2, 3, and 4 on all
articlescent. Martinerity 2 is reconsidered in the loss
bear of rolline or rolline of signification, which childs a
second of rolline or rolline of the company of the Chica Christophane for
tended for other significant contractions. Annual contraction of the contra | gate to Courthouse Bay at conventionals,
Notes of the Amentatives would affect the
2 are effectively expend with controls,
implementation using standard and which
personal and the standard person of the court,
which is the subsection 3 and 4 roly
stall in the subsection 5 and 4 roly
stall in the subsection 5 and 4 roly
implementation in the post and would be
may be obtained for Court of the Stall
implementation (E.C. composition 800). In
such as the subsection of the stall of the
stall presented on the stall of the stall of
stall presented and the stall of the stall
stall presented to the stall
of the stall of the
stall presented to the stall of the stall of the
stall presented to the stall of the stall of the
stall presented to the stall of the stall of the
stall presented to the stall of the stall of the
stall presented to require 3 stall of the stall of the
stall presented to the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall of the
stall of the stall of the stall of the stall | | Albernative 1 (No Action) does not across to
TABLET
Building Ranking of Abanqtines | | Alterna | | | Alternative 2 will have a longer time/trame
cause it roles on natural degradation, whereas
impley active treatment and will therefore meet the | squire more than 30 years to achieve the | | CERCLA Criteria | No Action | MNA (2) | (Z) | Air Spanging
and ERD
(4) | Once RAOs have been achieved, Alternatives 2, 3,
risks of approximately the same magnitude. | cited throughout the CERCLA process. y in North Carolina, concurs with the | | Threshold Criteria Pholection of Human Health and the Emilionment | 0 | 0 | : | : | e than 30 years. Alternatives 3 and 4 are expected
20 years), although "rebound" is a potential issue
although the system can be turned on again to | held on April 21, 2009 to present the
er community questions regarding the
and concerns raised at the meeting were | | Compliance with ARARs Primary Balancing Criteria | 0 | | | | by 5 years, as required, would be necessary to
thermatives because hazardous substances would | no comments were received from the | | Primary Balancing Creams Long-term Effectiveness and Permanence Reduction in Tosicity, Mobility, or Volume | 0 | 0 | : | : | th-based levels. w through Treatment, Alternatives 3 and 4 will | Well, Downgradient ERD Injections, | | Short-Term Effectiveness
Implementability | • | • | 0 | • | hrough treatment for groundwater, which is the
individual monitoring for natural attenuation
for soil under Alternatives 2, 3, and 4 are not | and LUCs is the Selected Remedy to | | Present-Worth Cost | \$0 | \$0.76 M | \$1.95 M | \$1.76 M | uction of contaminant concentrations through a
thrities is expected over time. | s 1 and 2 based on the relatively short | | Modifying Criteria | | 0 | | | ectiveness associated with Alternatives 3 and 4
affect the community because both treatments | | | State Acceptance
Community Acceptance | NC | NC | NC | NC | mentation; however, Alternative 2 has a lesser
not rely on an active treatment. Alternative 4 | als. Alternative 4 was chosen over
d lower associated cost. The horizontal | | Relative Ranking: • High: • Moderate: O Lei
Rankings are provided as qualitative description
NC = No significant Comments were received to | | e compliance of
Members | each alternativ | with the criteria | Since weekers during implementation than
spor intrusion during the operation of the air
up previous operation of the air sparge system
ind 4 are more likely to achieve RAOs, whereas
areal degradation rather than active treatment. | ay be challenging to retrofit the system
y. In addition, Alternative 3 has the
erzontal well, so overall; the cost of
evence for active treatment with lower | Based on the comparative analysis, a remedy is proposed, then after opportunity for public comment, selected that meets the threshold criteria and achieves RAOs. ## Refine the CSM to identify the current and potential future land and resource uses and potential exposure pathways for risk evaluation. | | Surface soil | Residential | No unacceptable risks | Not applicable | |------------|---|----------------------------|-----------------------|--------------------------------| | | Subsurface soil | Residential | Arsenic | Non-cancer hazard index > 1 | | Human | | | Benzene | Cancer risk > 10 ⁻⁴ | | | | Current or potential | TCE | Cancer risk > 10 ⁻⁴ | | Health | Groundwater | drinking water resource | cis-1,2-DCE | MCL exceedance | | | | difficility water resource | 1,1-DCE | MCL exceedance | | | | <u> </u> | Vinyl chloride | Cancer risk > 10 ⁻⁴ | | | Sediment/Surface water | Recreational & Training | No unacceptable risks | Not applicable | | | Surface soil | Habitat | No unacceptable risks | Not applicable | | Ecological | Subsurface soil | No pathway | Not applicable | Not applicable | | Loological | Groundwater | Habitat | No unacceptable risks | Not applicable | | | Sediment/Surface water | Habitat | No unacceptable risks | Not applicable | | Exten | pring Well tof TCE Exceedances tof VC Exceedances tof DCE Exceedances tof Benzene Exceedances | | | | **Develop Remedial Action Objec-** tives (RAOs) and cleanup levels to address all media and COCs that warrant a response action. 6 Remedial Alternatives Comparative Analysis ## **EXHIBIT 2. DATA CERTIFICATION CHECKLIST FOR RODS WITH MULTIPLE OPERABLE UNITS/SITES** ROD Section Declaration **Data Certification Checklist** ## Recommended Toolkit Tip For RODs addressing multiple sites or Operable Units, a table may be used to help the reader locate important information in each individual ROD, such as information for each recommended element of the sample Data Certification Checklist. | | R | OD Section Numb | er | |--|--------------|-----------------|----------------| | Data | OU/Site 1A-1 | OU/Site 1H | OU/Site 6A* | | Chemicals of concern and their respective concentrations | 1.2 | 2.2 | 3.2 | | Baseline risk represented by the chemicals of concern | 1.4 | 2.4 | 3.4 | | Cleanup levels established for chemicals of concern and the basis for these levels | 1.4 | 2.4 | 3.4 | | How source materials constituting principal threats are addressed | 1.5 | 2.5 | Not Applicable | | Current and reasonably anticipated future land-use assumptions and current and potential future beneficial uses of groundwater used in the baseline risk assessment and ROD | 1.3 | 2.3 | 3.3 | | Potential land and groundwater use that will be available at the site as a result of the Selected Remedy | 1.8 | 2.8 | Not Applicable | | Estimated capital, annual operation and maintenance (O&M), and total present worth costs, discount rate, and the number of years over which the remedy cost estimates are projected | 1.8 | 2.8 | Not Applicable | | Key factor(s) that led to selecting the remedy (i.e., describe how the Selected Remedy provides the best balance of tradeoffs with respect to the balancing and modifying criteria, highlighting criteria key to the decision) | 1.7 | 2.7 | Not Applicable | ^{*}no action is required for OU/Site 6A ## **EXHIBIT 3. SITE LAYOUT AND PHOTOGRAPHS** ## ROD Section Decision Summary Site Name, Location, and Brief Description ## Recommended Toolkit Tip Embedding regional and base location images as insets within a figure showing the detailed site layout often can effectively consolidate information previously displayed in several figures. This type of comprehensive graphic combined with historic and current site photographs, if available, can help provide the reader with a better understanding of the site. The figure should present accurate information on the site boundary, current conditions that encompass the source(s), or release area(s) and the extent of contamination. As noted in the 40 CFR 300.4. CERCLA response actions include "where a hazardous substance has been deposited, stored, disposed of, or placed, or otherwise come to be located." Therefore, the extent of contamination should not be truncated by artificial/ physical boundaries (e.g., property line, roadways, water bodies). ## Synthesize y Summarize ## ROD Section Decision Summary Site History & Enforcement Activities ## Recommended Toolkit Tip To enhance the presentation of the site history and enforcement activities discussion, a summary table and/or graphic depicting previous investigations/actions may be used to explain how the site has been adequately investigated utilizing an appropriate sampling strategy. The level of detail in a summary table should be adequate to meaningfully supplement the ROD's discussion of all pertinent investigation/action information as the site has gone through the CERCLA process. Including a figure can be an effective way of illustrating the sample locations with good spatial coverage, appropriate medium, and relevant analysis groups based on the CERCLA release or threat of release. Emerging contaminants (e.g., perchlorate, 1,4-dioxane) should not be overlooked. For extensive site histories where a text summary may be more appropriate, the use of a time-line can help present a graphic depiction of the CERCLA investigations/actions that have occurred. ## **EXHIBIT 5. NATURE AND EXTENT OF CONTAMINATION** ROD Section Decision
Summary Site Characteristics ## Recommended Toolkit Tip Comprehensive figures may be used to support the ROD's discussion concerning the current relationship between potential sources, subsurface geology and hydrogeology, and the lateral/vertical extent and magnitude of contamination. The figures should reflect any uncertainties in the data presentation. For sites with groundwater plumes or subsurface contamination, a figure can help portray an accurate, detailed depiction of both the horizontal and vertical extent of contamination, which can also assist in better understanding the conceptual site model. Synthesize >>> Summarize ## **EXHIBIT 6. CONCEPTUAL SITE MODEL** ## ROD Section Decision Summary Site Characteristics ## Recommended Toolkit Tip A comprehensive conceptual site model graphic generally helps illustrate the site layout, hydrogeologic setting, source area(s) and contaminated medium, fate and transport mechanisms, exposure pathways, and potential current and future receptors. North Current/Future Industrial Worker: Inhalation of potential groundwater vapors in indoor air. Air Handling Units Heat by Forced Air Concrete Slab On Grade ## EXHIBIT 7. CURRENT AND POTENTIAL FUTURE LAND AND RESOURCE USES ## ROD Section Decision Summary Current and Potential Future Land and Resource Uses ## Recommended Toolkit Tip A map can be an extremely effective tool for depicting all onsite and adjacent land/ resource uses, including recreational use of adjacent surface waters and groundwater classification for current and potential future use. Refer to page 7 of "Summary of Key Existing EPA CERCLA Policies for Groundwater Restoration" (OSWER Directive 9283.1-33, June 26, 2009.) The map can also help ensure appropriate remedial action objectives are identified for the potential receptors. Maps also can help show consideration of land use assumptions, relevant land and resource management plans, zoning maps, 20-year development plans, reuse assessments, and nearby development activity. The site layout figure or additional figures/photographs/ planning documents also may be useful for depicting current and potential future land and resource uses. Refer to page 2 of "Land Use in the CERCLA Remedy Selection process" (OSWER 9355.7-04, May 25, 1995.) ## **EXHIBIT 8. RISK ASSESSMENT SUMMARY TABLES** ### ROD Section Decision Summary Summary of Site Risks ## Recommended Toolkit Tip Summary tables may be used to help explain the ROD's discussion describing the risk assessment procedures and to help summarize the unacceptable risks: the summary tables can include information on receptor scenarios, medium, exposure pathways, chemicals of concern, exposure point concentrations, and toxicity values. These tables should be supplemented with cumulative risk summary tables to help ensure all risk assessment considerations discussed in EPA's ROD Guidance (1999) are addressed. Summary tables can help explain how the risk assessment reflects current toxicity values, risk assessment methodologies and guidance, and site conditions (e.g., current residual risk if interim actions were taken). The tables also can help explain how all appropriate exposure pathways have been evaluated in a manner that considers current and potential future use (e.g., indoor air exposure, risk to future on-site workers). ## Synthesize y ## **Summarize** | | | | | | | Tabl
Sum | | ncer Risks and Ha | azard Indices Bas | ed on 2004 HHRA | | | | | | | | |----------------------|-------------------|----------------|------------------------|----------|-----------------------------|-----------------------|---------------------------------|-----------------------|----------------------------|-----------------------|-------------------------------------|-------------------------------|--|--------------------|--|---------------|--| | | | | | | | Rece | ptor
nt/Future Site Worke | | xposure Route Ca | | with Cancer
ks >10 ⁻⁴ | Hazard Index
1.6E-03 | COPCs with HI | | | | | | | | | | | | | | Little Creek Inh | alation | NA
1.7E-08 | | NA
1.1E-04 | | | | | | | TABLE 2 | | | | | | | | | | | | 1.7E-03
2.9E+00 | | | | | | | Summary of | Human Health F | Risks Above US | SEPA Threshold | Levels | | | | | | | | NA
8.1E-02 | | | | | | | | | | | | | | | | | | | 3.0E+00
1.9E-01 | | | | | | | | | | | | | | | | | Non-Cance
Toxicity | r | NA
4.4E-01 | | | | | | | | | | | | RME | RME Non- | | CTE Non- | Cancer Toxic | | | 6.3E-01
2.0E-01
NA | | | | | | | Receptor | Media | Pathway | Chemical of
Concern | EPC' | Cancer
Risk ¹ | Cancer
Hazard (HI) | CTE Cancer
Risk ¹ | Cancer
Hazard (HI) | Factor (CSF
mg/kg-day-1 | (RfD)
mg/kg-day | | 2.1E-01
4.1E-01 | | | | | | | receptor | Media | ratiiway | Concern | LFC | Mar. | Hazaru (H) | IVISK. | mazaru (m) | ilig/kg-uay- | ilig/kg-uay | | 3.9E-01
NA | | | | | | | | | | Arsenic | 2.8 | NA | 2.9 | NA | 0.43 | 1.5E+00 | 0.0003* | | 1.4E+00
1.8E+00 | Vanadium (1.4) | | | | | | | | | | | | | | | | | 4 | 1.2E-01
NA | | | | | | | | | Ingestion | Iron | 12,000 | NA | 0.46 | NA | 0.16 | NA | 0.7** | | 3.3E-01
4.5E-01
6.3E+00 | | | | | | | | | | | | | | | | | | - | 6.8E+00 | Arsenic (1.5), Iron
Manganese (2.0) | | | | | | | Ground-
water | | Manganese | 1,100 | NA | 1.6 | NA | 0.47 | NA | 0.02* | | NA
2.3E-01 | | | | | | | Future
Resident | water | | Arsenic | 28 | NA | 0.013 | NA | 0.0014 | 1.5E+00 | 0.0003* | | 7.0E+00
1.7E+00 | | | | | | | Adult | | Dermal | Dermal | Alsellic | 20 | INA | 0.013 | INA | 0.0014 | 1.52100 | 0.0003 | ▐ | NA
5.8E-01
2.3E+00 | | | | | | | | | | Dermal | Dermal | Dermal | Iron | 12,000 | NA | 0.0024 | NA | 0.00052 | NA | 0.7** | | 1.9E+00
NA | | | | | | | | Managana | 4 400 | NA | 0.2 | NA | 0.038 | NA | 0.0008* | ╂ | 2.8E-01
2.2E+00 | | | | | | | | Manganese | 1,100 | NA NA | 0.2 | NA | 0.036 | INA | 0.0008 | | 3.7E+00
NA | Vanadium (2.6) | | | | | | | Site
Perimeter | Ingestion | Vanadium | 202 | NA | 0.028 | NA | 0.0098 | - | - | | 1.9E+00
5.5E+00 | vanadum (1.9) | | | | | | | Soil | Dermal | vanadium | 202 | NA | 1.4 | NA | 0.086 | - | - | | 1.1E+00
NA
4.3E-01 | | | | | | | | | | Arsenic | 28 | 6.3E-04 | 6 | 8.0E-05 | 1.4 | 1.5E+00 | 0.0003* | | 1.6E+00
1.9E+01
NA | | | | | | | | | Ingestion | Iron | 12,000 | NA | 1.1 | NA | 0.54 | NA | 0.7** | | NA
NA | | | | | | | | Ground- | | Manganese | 1,100 | NA | 3.6 | NA | 1.6 | NA | 0.02* | | NA
NA
NA | | | | | | | Future | water | | Arsenic | 28 | 3.6E-06 | 0.04 | 2.0E-07 | 0.0031 | 1.5E+00 | 0.0003* | | NA
NA
NA | | | | | | | Resident
Child | | Dermal | Iron | 12,000 | NA | 0.007 | NA | 0.0012 | NA | 0.7** | | NA
NA
NA | | | | | | | | | | Manganese | 1,100 | NA | 0.06 | NA | 0.086 | NA | 0.0008* | | NA
NA | | | | | | | | Site Perimeter | Ingestion | Vanadium | 202 | 0.0E-00 | 2.6 | NA | 0.051 | - | - | | NA
NA
NA | | | | | | | | Soil | Dermal | variaululli | 202 | 0.0E-00 | 1.9 | NA | 0.063 | - | - | | NA
NA | | | | | | | Future | Ground-
water | Ingestion | Arsenic | 28 | 1.5E-04 | 0.92 | 9.2E-06 | 0.29 | 1.5E+00 | 0.0003* | | | | | | | | | Industrial
Worker | Site Perimeter | Ingestion | Vanadium | 202 | 0.0E-00 | 0.2 | NA | 0.0091 | - | - | | | | | | | | | | Soil | Dermal | Vanadium | 202 | 0.0E-00 | 1.3 | NA | 0.045 | - | - | | | | | | | | ## **EXHIBIT 9. BASIS FOR ACTION** ### ROD Section Decision Summary Summary of Site Risks ## Recommended Toolkit Tip Maps and tables can help explain the results of the risk assessment and to help identify medium and chemicals of concern (COC) warranting a response action, considering current and potential future land use. These tools can help document the appropriate risk management decisions for risks exceeding threshold criteria and for chemicals of potential concern identified in screening-level risk assessments (e.g., comparison to background, slight exceedance of threshold criteria). A summary table with supporting text may be useful in identifying the potenreceptors, impacted medium, land and resource uses, and COCs warranting response action under CERCLA. A summary table can help present the concentrations of COCs in each medium and associated risk factors may also be included to illustrate the magnitude of the threat to human health and the environment posed by the site. Graphics to help explain the Basis for Action can also assist in the ROD's discussion of the Remedial Action Objectives (RAOs) and the cleanup levels (see Exhibit 10). | Receptor | Media | Reasonably Anticipated
Land Use | Chemical of Concern
Requiring Action | Basis for Action | | |------------|------------------------|--|---|---|--| | | Surface soil | Residential | No unacceptable risks | Not applicable | | | | Subsurface soil | Residential | Arsenic | Non-cancer hazard index of 1.4 | | | | | | Benzene | Cancer risk of 1.2 x 10 ⁻⁴ | | | Human | | | TCE | Cancer risk of 2.3 x 10 ⁻³ | | | Health | Groundwater | Current or potential drinking water resource | cis-1,2-DCE | Max concentration = 136 μg/L (exceeding MCL of 70 μg/L) | | | | | unitaring water recourses | 1,1-DCE | Max concentration = 34 μg/L (exceeding MCL of 7 μg/L) | | | | | | Vinyl chloride | Cancer risk of 1.7 x 10 ⁻⁴ | | | | Sediment/Surface water | Recreational & Training | No unacceptable risks | Not applicable | | | | Surface soil | Habitat | No unacceptable risks | Not applicable | | | Ecological | Subsurface soil | No pathway | Not applicable | Not applicable | | | Ecological | Groundwater | Habitat | No unacceptable risks | Not applicable | | | | Sediment/Surface water | Habitat | No unacceptable risks | Not applicable | | ## EXHIBIT 10. REMEDIAL ACTION OBJECTIVES FOR CHEMICALS OF CONCERN WARRANTING RESPONSE ACTION ### ROD Section **Decision
Summary** Remedial Action Objectives #### Recommended **Toolkit Tip** Where appropriate, it may be helpful to use a bullet format to present remedial action the objectives (RAOs) that are established to address all unacceptable current and reasonably anticipated future risks at the site. A bullet format for the RAOs can effectively present qualitative statements. To present the quantitative site-specific cleanup levels that need to be met for each medium in order to achieve the RAOs, it may be useful to include tables to list the chemicals of concern (COCs) in each medium warranting response action, their respective cleanup levels, and the basis for the cleanup levels. A figure also can be effective to help illustrate the areas within the site where concentrations of COCs exceed cleanup levels and warrant action. ### 2 DECISION SUMMARY #### 2.7 **Remedial Action Objectives** The Navy, EPA, and VDEQ concluded that remedial action is necessary to protect public health, welfare, and the environment from actual or threatened releases of hazardous substances in soil, shallow groundwfiter, sediment, and surface water at Site 2. Site-specific Remedial Action Objectives (RAOs) are as follows: Waste, soil, and sediment (including sediment pore water): - Prevent direct media contact with human and ecological receptors at concentrations that pose unacceptable risks - Prevent migration of contaminants through surface water runoff and erosion pathways - Prevent or minimize transport of COCs from waste to site media Shallow groundwater (including residual DNAPL): - Reduce contaminant source mass to the maximum extent practicable - Prevent activities that might cause migration of chlorinated VOCs in the Columbia aquifer to the underlying Yorktown aquifer - Prevent chlorinated VOC migration from the shallow groundwater to surface water and sediment - Reduce chlorinated VOC concentrations in shallow groundwater to the maximum extent practicable and prevent exposure until concentrations allow for unlimited use and unrestricted exposure (beneficial use scenario) #### Surface water: Minimize degradation of surface water The quantitative cleanup levels that need to be met to achieve the RAOs are presented in Table 2-2 below. TABLE 2-2 COCs and Cleanup Levels | COOs and Oleanup Levels | | | | | | | | | | |-------------------------|---------------|-----------------------------|--|--|--|--|--|--|--| | Chemical of Concern | Cleanup Level | Basis for Cleanup Level | | | | | | | | | Surface soil (mg/kg) | | | | | | | | | | | Antimony | 26.4 | Calculated risk-based value | | | | | | | | | Lead | 400* | Action Level | | | | | | | | | Vanadium | 72 | Background | | | | | | | | | Groundwater (μg/L) | | | | | | | | | | | 1,1-DCE | 7 | MCL | | | | | | | | | cis-1,2-DCE | 70 | MCL | | | | | | | | | Napthalene | 170 | Cacluated risk-based value | | | | | | | | | TCE | 5 | MCL | | | | | | | | | Sediment (mg/kg) | | | | | | | | | | | Chromium | 53 | Background | | | | | | | | | | | | | | | | | | | ^{*}average site-wide concentration ## **EXHIBIT 11. SUMMARY OF REMEDIAL ALTERNATIVES** ## ROD Section Decision Summary Description of Alternatives ## Recommended Toolkit Tip Remedial alternatives discussed in a ROD also may be presented in a summary table identifying the alternatives, major components, description (e.g., estimated volume of excavation), costs (capital, operation and maintenance, present worth, and discount rate), and estimated time frame to achieve remedial action objectives (RAOs). Such a table can help show how the alternatives considered would each address the risks at the site, consistent with the basis for action and RAOs. To accurately present the "no action" alternative, land use controls (LUCs)/ institutional controls (ICs) should not be included, for example. The tables can also include text that presents the common elements and distinguishing features that are unique to the alternatives and that may directly affect the implementation, operation, or outcome if selected as the remedy. Refer to Institutional Controls: A Guide to Planning, Implementing, Maintaining, and Enforcing Institutional Controls at Contaminated Sites (EPA, 2010). A summary table should include appropriate use of terminology for LUCs/ICs, if applicable. ## Synthesize Summarize | Alternative | Components | Description | Cost | |---|---|---|--| | Soil | | · · · · · · · · · · · · · · · · · · · | | | No Action No action for contaminated soil with no restriction on activities. | -Existing soil | -No action | No cost | | Biostimulation and Off-
Site Disposal Excavation and stockpiling of contaminated soil for on-
site ex-situ treatment followed by backfilling and site restoration. | -Excavation of soil -On-site ex-situ biostimulation followed by off-site disposal -Site restoration -Engineering Controls | -Excavation of an estimated 1,333 yd³ of soil. On-site material will be evaluated for potential re-use for backfill (it is estimated that only 1/3 of excavated material is contaminated based on existing sample data) -Collection of confirmation samples from the excavation and of the uncontaminated soil for analysis of COCs to verify performance standards are met -Stockpiling of contaminated site soil and placement on a treatment pad with physical controls (fencing and signs) to prevent access and erosion and sediment controls (sill fencing) to prevent contaminant transport -Mixing stockpiled soil with amendments (e.g., commercial fertilizer) and bi-weekly aeration to stimulate biological degradation -Periodic sampling of stockpiled soil until performance standards are met followed by off-site disposal -Mixing clean fill and uncontaminated site soil for backfill | Capital Cost:
\$291,600
Annual O&M Cost: \$
Present-Worth Cost
\$291,600
Federal Discount
Rate: 3.5%
Timeframe: 2 years | | Excavation and Off-Site Disposal Excavation of contaminated soil followed by off-site disposal, backfilling, and site restoration. | -Excavation of soil
-Off-site disposal
-Site restoration
-Engineering
Controls | and sife restoration (repaving) -Excavation of an estimated 1,333 yd³ of soil. On-site material will be evaluated for potential re-use for backfill (it is estimated that only 1/3 of excavated material is contaminated based on existing sample data) -Collection of confirmation samples from the excavation and of the uncontaminated soil for analysis of COCs to verify performance standards are met -Stockpiling of contaminated site soil with physical controls (signs) to prevent access and erosion and sediment controls (sife fencing) to prevent contaminant transport during waste characterization -Waste characterization testing to classify the contaminated soil for proper off-site disposal -Mixing clean fill and uncontaminated site soil for backfill and site restoration (repaving) | Capital Cost:
\$229,300
Annual O&M Cost:
Present-Worth Cost
\$229,300
Federal Discount
Rate: 3.5%
Timeframe: 1 month | | Groundwater | | | | | No Action No action for contaminated groundwater with no restriction on activities. | -Existing groundwater | -No action | No cost | | MNA and LUC/ICs
Groundwater monitoring to
access concentrations of
COCs until performance
standards have been
achieved via natural
attenuation | -MNA groundwater
monitoring
-LUC/ICs | -Periodic groundwater monitoring (three existing wells and one newly installed well) for natural attenuation indicator parameters and reporting -LUC/ICs to restrict access to the Surficial Aquifer so that the potential exposure pathway to contamination would remain incomplete until performance standards have been achieved -O&M of monitoring wells | Capital Cost: \$73,4i
Annual O&M Cost:
\$24,900
Present-Worth Cost
\$194,300
Federal Discount
Rate: 3.5%
Timeframe: 5 years | ## EXHIBIT 12. EVALUATING MONITORED NATURAL ATTENUATION AS A REMEDIAL ALTERNATIVE ## ROD Section Decision Summary Description of Alternatives ## Recommended Toolkit Tip A diagram may be a useful tool if Monitored Natural Attenuation (MNA) is considered as a potential remedial alternative or component of an alternative for groundwater; the diagram can present the lines of evidence contained in the administrative record and discussed in the ROD which support an MNA approach at the site. The diagram also can be an effective tool for depicting a clear and meaningful trend of concentrations, figures of groundwater concentrations over time, and tables of geochemical data. Other graphics can help explain the estimated time frame for MNA to achieve cleanup levels, as well as comparable time frames which
could be achieved with active restoration. Tables and diagrams also can be used to portray site-specific data, such as the lines of evidence for MNA, and summarize the key points discussed in the ROD's evaluation contained in the Decision Summary: Description of Alternatives and Comparative Analysis of Alternatives. | Natural Attenuation | Upgradient | Source Area | Downgradient | | |----------------------|-------------------|--------------|--------------|--| | Indicator Parameters | MW-05 | MW-04 | MW-14 | | | | Geochemical Par | ameters | | | | Temperature (°C) | 18.7 | 17.4 | 17.2 | | | DO (mg/L) | 1.2 | 0.25 | 0.3 | | | pH (SU) | 8.2 | 7.5 | 8.1 | | | ORP (mV) | 31 | -170 | -123 | | | Ferrous Iron (mg/L) | 0.5 | 8.2 | 2.1 | | | Nitrate (mg/L) | Not Detected | Not Detected | Not Detected | | | Nitrite (mg/L) | 1.2 | 0.8 | 0.7 | | | Alkalinity (mg/L) | 600 | 1,500 | 1,400 | | | Chloride (mg/L) | 57 | 254 | 195 | | | Sulfate (mg/L) | 12 | 1.8 | 8.4 | | | Sulfide (mg/L) | 0.8 | Not Detected | 0.1 | | | TOC (mg/L) | 4.5 | 260 | 48 | | | Methane (µg/L) | 24 | 780 | 342 | | | Ethane (µg/L) | Not Detected | 125 | 97 | | | Ethene (µg/L) | Not Detected | 12.8 | 5.4 | | | M | icrobial Analysis | (cells/mL) | | | | Dehalococcoides | Not Detected | 350,000 | 5,000 | | | Desulfuromonas | Not Detected | 23.6 | 1.54 | | | Dehalobacter | 2.81 | 45.1 | 6.45 | | ## **TCE Concentrations Over Time** Performance monitoring to evaluate biodegradation over time should be included as part of an MNA alternative. ### Lines of evidence for MNA: - 1. Historical groundwater and/or soil chemistry data that demonstrate a clear and meaningful trend of decreasing contaminant mass and/or concentration over time at appropriate monitoring or sampling points. (In the case of a groundwater plume, decreasing concentrations should not be solely the result of plume migration. In the case of inorganic contaminants, the primary attenuating mechanism should also be understood.) - 2. Hydrogeologic and geochemical data that can be used to demonstrate indirectly the type(s) of natural attenuation processes active at the site, and the rate at which such processes will reduce contaminant concentrations to required levels. For example, characterization data may be used to quantify the rates of contaminant sorption, dilution, or volatilization, or to demonstrate and quantify the rates of biological degradation processes occurring at the site. - 3. Data from field or microcosm studies (conducted in or with actual contaminated site medium) which directly demonstrate the occurrence of a particular natural attenuation process at the site and its ability to degrade the contaminants of concern (typically used to demonstrate biological degradation processes only). Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (EPA, 1999) ## **EXHIBIT 13. COMPARATIVE ANALYSIS OF ALTERNATIVES** ## ROD Section Decision Summary Comparative Analysis of Alternatives ## Recommended Toolkit Tip Various table formats using summary text can be effective in complementing the ROD's detailed discussion of how each alternative compares with the other alternatives and with respect to the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) nine criteria. Tables can help identify the distinguishing element or factor that favors one alternative above the others and that supports the rationale for selection of the remedy explained in the ROD. A graphic "consumer report" style table may be used to present the relative ranking in support of the ROD's text. The NCP's two threshold criteria must be met for all alternatives except "no action". If contingency remedies are a component of a remedial alternative, be sure to evaluate them with respect to the NCP criteria. Refer to "Guide to Preparing Superfund Proposed Plans, Record of Decisions, or Other Remedy Selection Decision Documents" (OSWER 9200.1-23P, July 1, 1999), Highlight 8-8, p. 8.10. ## Synthesize Summarize ## **EXHIBIT 14. DESCRIPTION OF SELECTED REMEDY** ## ROD Section Decision Summary Selected Remedy ## Recommended Toolkit Tip A figure typically is an effective way to help describe the Selected Remedy discussion in the ROD; a figure can be useful to illustrate the remedy components that address all chemicals of concern and medium requiring action. For example, the figures in this exhibit show the groundwater treatment area/soil removal area, proposed injections points for treatment. performance and long-term monitoring locations as well as the estimated aquifer use control boundary that will be in-place until groundwater cleanup levels are achieved. ## EXHIBIT 15. EXPECTED OUTCOMES OF THE SELECTED REMEDY **Decision Summary** Selected Remedy #### Recommended **Toolkit Tip** A summary table can be a useful tool to supplement ROD text by highlighting how the key components of the Selected Remedy are designed to mitigate risk to achieve remedial action objectives consistent with current and potential future land and resource uses. #### 2.9.3 Expected Outcomes of the Selected Remedy Current industrial land uses are expected to continue at Site 73 and there are no other planned land uses in the foreseeable future, or for development of adjacent lands. Cleanup levels for the Selected Remedy are based on unlimited use and unrestricted exposure. Exposure will be controlled through land use controls/industrial controls (LUCs/ICs) until chemicals of concern (COCs) in groundwater and soil are reduced to the cleanup levels. Table 2-5 summarizes the unacceptable risk (media, pathway, receptor), the remedial action objectives (RAOs) identified to address the risk, the remedy component intended to achieve the RAO, the metric that measures the remedial action progress, and the expected outcome that the remedy will achieve. Expected Outcomes of the Selected Remedy | Risk | Remedial Action Objective | Remedy
Component | Metric | Expected
Outcomes | |---|---|----------------------|---|---| | Ingestion of VOCS
in groundwater
under potable use
scenario | Restore groundwater quality based
on the classification of the aquifer as
a potential source of drinking water
and to prevent human ingestion of | Air sparge
system | Operate system for up to 5 years or
until groundwater cleanup levels within
the radius of influence are met,
whichever is the shortest period. | Achieve | | | water containing chemicals of | LTM for MNA | Implement until each groundwater | and unrestricted | | | concern at concentrations above
NCGWQS or MCL standards,
whichever is more stringent until
cleanup levels have been obtained. | LUCs/ICs | chemical of concern is at or below its respective cleanup level for four consecutive monitoring events. | exposure | | Direct exposure to
arsenic in soil under
residential use scenario
and leaching potential
to groundwater | Prevent future residential exposure to arsenic-contaminated soils above the NC HWS SSL and minimize transport to groundwater. | LUCs/ICs | Maintain LUCs/ICs until chemicals of
concern in the soil are at such levels
that allow for unlimited use and
unrestricted exposure. | Maintain industrial use | | Transport of VOCs | Minimize migration of chemicals of | ERD | Maintain until chemicals of concern in | Minimize | | in groundwater to | concern in groundwater to surface | biobarrier | groundwater meet cleanup levels | migration of | | surface water | water. | LTM | Implement until each groundwater | chemicals of | | | | LUCs/ICs | chemical of concern is at or below its
respective cleanup level for four
consecutive monitoring events. | concern in
groundwater to
surface water | The air sparge system will be operated for up to 5 years or until the cleanup levels within the radius of influence were met, whichever is the shortest period. System effectiveness will be evaluated annually by comparison of current concentrations of COCs in treatment area monitoring wells to pretreatment concentrations and the cleanup levels. The enhanced reductive dechlorination (ERD) biobarrier wall will be maintained until groundwater COCs concentrations have met the cleanup levels. In accordance with LUC/IC objectives, groundwater use will be restricted to monitoring or remedial purposes. Long-term monitoring (LTM) for Monitored Natural Attenuation (MNA) will be conducted until each COC in groundwater is at or below its respective cleanup level for four consecutive monitoring events. The Navy and Marine Corps, in partnership with USEPA and the State, will evaluate the discontinuation of monitoring of individual COCs that have met the cleanup levels after four rounds based on site conditions. The results of LTM will be documented in an annual monitoring report. When all COCs have achieved their cleanup levels for four consecutive sampling events, site closure will be initiated. Once RAOs for this groundwater action have been achieved, the Site 73 area is expected to be suitable for unlimited use and unrestricted exposure for groundwater. Therefore, the Navy, USEPA, and NCDENR may agree for the groundwater LUC/IC component of the Selected Remedy to be terminated at site closeout. LUCs/ICs, restricting any potential future residential exposure to impacted soils, will be maintained until the concentration of COCs in the soil are at such levels that allow for unrestricted use and unlimited exposure. ## **EXHIBIT 16. OPTIONAL REFERENCE CD** ##
Recommended Toolkit Tip A hard copy ROD is the official ROD and should be placed in the Administrative Record. An optional CD reference tool can be included as a supplemental tool in order to provide the reader with immediate access to Administrative Record files referenced within the ROD. A detailed reference table. highlighting the key words identified in the ROD text, should be provided. Prior to developing a reference CD, stakeholder input and community involvement should be considered. ## **Administrative Record File** ## ► Hyperlinked Administrative Record Information | Ite | em Reference Phrase in ROD | Location in ROD | Identification of Referenced Document Available in
the Administrative Record ¹ | | |-----|---|-----------------------------|---|--| | 1 | Site 12 is the crash-crew training area | Section 2.1 | Final Remedial Investigation Report, Operable Unit 6, Site 12, Crash Crew Training Area, MCAS Cherry Point, North Carolina. Attachment 2, Section 2.2, Pages 2-1 through 2-3. CH2M HILL, December 2005. | | | 2 | hydrogeologic setting | Section 2.2 | Final Remedial Investigation Report, Operable Unit 6, Site 12, Crash Crew Training Area, MCAS Cherry Point, North Carolina. Section 4.3.4.1, Pages 4-10 through 4-13. CH2M HILL. | | | | 404400400 | 40.44.0% 40.0 - 1 10-1 10-1 | | | #### 4.3.4.1 Site 12 Geology and Hydrogeology The USCS has conducted several studies of the hydrogeology at MCAS Cherry Point. A description of MCAS Cherry Point geology and hydrogeology as described by the USCS is presented to provide an overview of available information and characteristics of the hydrostratigraphic units at the MCAS. While developing a quasi three-dimensional finite-difference groundwater-flow model and while analyzing the hydrogeologic framework of MCAS Cherry Point, the USGS evaluated geophysical and lithologic well log data from 30 wells and water-level data from oil test wells, water supply wells, and observation wells. The subsurface materials evaluated by the USGS investigations and supported by site borings are separated into the following aquifers and respective confining units: Surficial Aquifer, Yorktown Aquifer, Pungo River Aquifer, upper Castle Hayne Aquifer, and lower Castle Hayne Aquifer, Deeper aquifers are not addressed in this site-specific discussion because the depth and separation of these aquifers from contaminant sources by a series of confining units, as well as the brackish water quality of the deeper aquifers, preclude the potential for significant impacts to these deeper aquifers. ## ▶ Other Optional Electronic Enhancements The public information repository is located at the library, Havelock, NC 28532, Phone 252-447-7509 remedy section process will be available the IR Program website # ROD with Optional Reference CD